Распродажа

Электронные компоненты со склада по низким ценам, подробнее >>>

Журнал Радио

2004: 
1, 2, 3, 4, 5, 6, 7, 8
2003: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
2002: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
2000: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1999: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1998: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1971: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1947: 
1, 2, 3, 4, 5
1946: 
1, 2, 3, 4-5, 6-7, 8-9

Новости электроники

В 14 раз выросло количество россиян на MediaTek Labs ? проекте по созданию устройств "интернета вещей" и "носимых гаджетов"

Сравнив статистику посещения сайта за два месяца (ноябрь и декабрь 2014 года), в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины ? в 12. Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs.mediatek.com превысила одну десятую от общего количества зарегистрированных на MediaTek Labs пользователей.

Новое поколение Джобсов или как MediaTek создал свой маленький "Кикстартер"

Амбициозная цель компании MediaTek - сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик - порог входа очень низкий.

Семинар и тренинг "ФеST-TIваль инноваций: MAXIMум решений!" (14-15.10.2013, Новосибирск)

Компания Компэл, приглашает вас принять участие в семинаре и тренинге ?ФеST-TIваль инноваций: MAXIMум решений!?, который пройдет 14 и 15 октября в Новосибирске.

Мне нравится

Комментарии

дима пишет в теме Параметры биполярных транзисторов серии КТ827:

люди куплю транзистар кт 827А 0688759652

тамара плохова пишет в теме Журнал Радио 9 номер 1971 год. :

как молоды мы были и как быстро пробежали годы кулотино самое счастливое мое время

Ивашка пишет в теме Параметры отечественных излучающих диодов ИК диапазона:

Светодиод - это диод который излучает свет. А если диод имеет ИК излучение, то это ИК диод, а не "ИК светодиод" и "Светодиод инфракрасный", как указано на сайте.

Владимир пишет в теме 2Т963А-2 (RUS) со склада в Москве. Транзистор биполярный отечественный:

Подскажите 2т963а-2 гарантийный срок

Владимир II пишет... пишет в теме Параметры биполярных транзисторов серии КТ372:

Спасибо!

Журнал Радио 4 номер 2004 год.

ЭЛЕКТРОНИКА В БЫТУ

Симисторные регуляторы мощности

 В нашем журнале было опубликовано немало описаний сими-сторных регуляторов мощности нагревательных и осветительных приборов, питаемых от сети переменного тока. Но в редакцию продолжают поступать заметки различных авторов, предлагающих свои усовершенствования подобных устройств. Предлагаем вниманию читателей подборку материалов на эту тему.

К. СМОЛЯКОВУ из Нижнего Новгорода, взявшемуся за повторение регуляторов по описанию в [1], удалось объединить в одном устройстве два и создать прибор, способный регулировать подаваемую в нагрузку мощность как путем изменения числа "активных" полупериодов сетевого напряжения, так и фазоймпульсным методом. В его регуляторе, собранном по схеме на рис. 1, всего одна микросхема DD1. Режим работы изменяют переключателем SA1 с тремя группами контактов (использован переключатель диапазонов от портативного транзисторного приемника). Узел питания (диоды VD1, VD2, стабилитрон VD3), формирователь "нулевых" импульсов (транзисторы VT1, VT2), выходной узел (дифференцирующая цепь C6R6, элемент DD1.4, транзистор VT4, симистор VS1) остались такими же, как в прототипе.


Увеличить

Рассмотрим работу устройства в режиме регулирования мощности фазо-импульсным методом (переключатель 5А1 показан находящимся именно в этом положении). Импульсы с выхода элемента DD1.1, совпадающие с моментами перехода сетевого напряжения через нуль, открывают транзистор VT3, когда мгновенное значение сетевого напряжения близко к нулю. В результате конденсатор С4 разряжается через транзистор и напряжение на входе элемента DD1.2 скачком возрастает почти до напряжения питания, а на его выходе уменьшается почти до нуля (низкого логического уровня). Симистор VS1 закрыт, нагрузка отключена от сети.

С возрастанием мгновенного значения сетевого напряжения до 30...50 В по абсолютному значению логический уровень на выходе элемента DD1.1 становится низким и транзистор VT3 закрывается, давая возможность конденсатору С4 заряжаться током, протекающим по цепи: диод\/04 — левая (по схеме) часть резистора R5 — выход элемента DD1.2. Зарядка продолжается до порога переключения элемента DDI.2, после чего уровень на выходе этого элемента становится высоким, а на выходе элемента DD1.3 — низким. В момент смены уровней происходит зарядка конденсатора С6 током, протекающим через резистор R6, поэтому на выходе элемента DD1.4 появляется короткий импульс, открывающий транзистор VT4. На управляющий электрод симистора VS1 поступает открывающий импульс. Его задержка относительно нулевой фазы сетевого напряжения зависит от постоянной времени зарядки конденсатора С4, зависящей в свою очередь от положения движка переменного резистора R5. С окончанием полупериода симистор закроется, а в следующем полупериоде процесс повторится.

Во втором режиме замкнувшимися контактами SA1.2 параллельно конденсатору С4 подключен С5 значительно большей емкости. Контактами SA1.1 соединены база и эмиттер транзистора VT3, в результате транзистор постоянно закрыт и более не влияет на работу устройства. Элемент DD1.2, резистор R5 с диодами VD4, VD5 и конденсаторы С4, С5 образуют генератор прямоугольных импульсов с частотой повторения приблизительно 2 Гц.

С переключением контактов SA1.3 элементу DD1.3 возвращается его исходная логическая функция И-НЕ. На один из входов элемента поступают импульсы генератора, а на другой — перехода сетевого напряжения через ноль, поэтому на его выходе образуются пачки импульсов, совпадающих по времени с "нулями" сетевого напряжения, причем длительность пачек и интервалов между ними зависит от скважности импульсов генератора. Каждый из импульсов пачки вызывает появление открывающего импульса на управляющем электроде тиристора VS1 в самом начале соответствующего полупериода. Следовательно, в цикле продолжительностью 0,5 с число полупериодов, в которых нагрузка подключена к сети, зависит от положения движка переменного резистора R5.

Примечание редакции. При нечетном числе "рабочих" или "холостых" полупериодов в токе, потребляемом от сети, образуется заметная постоянная составляющая, что может неблагоприятно сказаться не работе подключенных к той же сети электромагнитных приборов — электродвигателей, их пускателей, трансформаторов. Впрочем, этот недостаток присущ и прототипу [1].

А. БУТОВ из с. Курба Ярославской области предлагает усовершенствованный вариант своего сенсорного регулятора мощности [2] с узлом управления на микросхеме К145АП2, описание которой можно найти в [3]. В отличие от прототипа новый регулятор можно включать в разрыв любого из проводов сети, что немаловажно, если им заменяют обычный контактный выключатель освещения

Схема прибора показана на рис. 2. Алгоритм управления прежний: кратковременное касание пальцем сенсора Е1 включает или выключает лампу EL1, а при продолжительном касании яркость свечения изменяется циклически (от минимальной до максимальной и обратно приблизительно за 5 с) Регулятор запоминает свое состояние — лампа всегда включается с установленной перед ее выключением яркостью Как и прежде, регулятором можно управлять, не только прикасаясь к сенсору, но и нажимая кнопку SB1, которая действует аналогичным образом.


Увеличить

Некритичности регулятора к фазировке сетевых проводов удалось достичь введением усилителя сигнала сенсора Е1 на составном транзисторе VT1, VT2. Выпрямленного диодами VD4. VD5 напряжения, достигающего при прикосновении рукой к сенсору -5...-9 В, теперь достаточно для управления микросхемой DA1 в любом случае. Конденсатор С2, устраняя ООС по переменному напряжению, увеличивает коэффициент усиления каскада. Конденсатор СЗ предназначен для подавления высокочастотных помех.

Узел питания регулятора состоит из гасящего конденсатора С1 с ограничительным резистором R1, выпрямителя (диоды VD1, VD2), стабилизатора напряжения {стабилитрон VD3) и конденсаторов фильтра С5, С6. Резистор R1 желательно установить Р1-7 или аналогичный импортный разрывной Остальные постоянные резисторы регулятора — С1-4, С2-23, МЛТ соответствующей мощности Оксидный конденсатор С6 использован малогабаритный. фирмы Rubycon, конденсаторы CI, С11 — К73-17, К73-24в или К73-50 на напряжение не ниже 400 В или импортные, предназначенные для работы в цепях переменного тока, например, CPF 250V Х2. Остальные конденсаторы — керамические или пленочные К10-17, КМ-5, К73-17в. Конденсаторы К10-7 нежелательны по причине их низкой надежности.

Диоды КД522А (VD4, VD5) можно заменить на КД503, КД521, КД103 с любым буквенным индексом или импортными 1N4148. Диоды КД243Д (VD1 VD2) заменяют на КД243Е—КД243Ж, КДЮ5Б—КД105П КД209А—КД209В, 1 N4004—1 N4007, стабилитрон Д814Г (VD3) — КС211Ж, КС508А, 1N6001B, 1 N4741 А. Транзистором VT3 могут служить КТ645А, КТ645Б, КТ6114, SS8050, SS9013, 2SC1009, 2SC2331, 2SD1616 с любым буквенным индексом Транзисторы VT1 и VT2 могут быть любыми из серий КТ3107, КТ6112, SS9015, 2SA733, 2SA910, 2SA992

Симистор КУ208Г (VS1) можно заменить на ТС112-10, ТС112-16, ТС106-10 класса по напряжению не ниже 4 или импортными МАС12, МАС15. Симистор устанавливают на П-образный теплоотвод размерами 110 25 мм из алюминиевого листа толщиной 1,5...2 мм. При этом допустимая мощность нагрузки регулятора — 350 Вт.

Дроссель L1 содержит 135 витков провода ПЭВ-2 0,51 мм или намотан на кольцевом магнитопроводе К32х20x6 из феррита М2500НМС1. Перед намоткой ребра кольца притупляют и обматывают его слоем пленки из изоляционного материала. Готовую обмотку пропитывают изоляционным лаком. Сопротивление дросселя постоянному току — приблизительно 0,3 Ом. Вместо кольца допустимо применить отрезок ферритового стержня 400НН диаметром 8 10 мм и длиной 60 мм.

Минимальная мощность лампы EL1 — 25 Вт. Полностью выключить лампу меньшей мощности не удастся из-за разогрева ее нити током, протекающим через конденсатор С1

Каскад на транзисторах VT1, VT2 необходимо размещать как можно дальше от симистора VS1 и дросселя L1. Если сенсор Е1 соединен с регулятором проводом длиной более 50 мм, последний также следует экранировать. Для уменьшения наводок на сенсор симистор VS1 желательно электрически изолировать от теплоотвода.

Еще одна конструкция А. БУТОВА — симисторный фазовый регулятор с уменьшенным уровнем помех. В большинстве известных конструкций при максимальной мощности в нагрузке симистор не открывается, пока напряжение на нем не достигнет 30...80 В. Это приводит не только к "недобору" нагрузкой приблизительно 4 % мощности, но и к значительному возрастанию уровня создаваемых в этом режиме радиопомех. Если заставить симистор открываться при возможно меньшем напряжении, эти недостатки будут устранены или ослаблены.

В регуляторе, собранном по схеме, показанной на рис. 3, на элементах VT1, VS1, R2, R3, С2 собран аналог динистора, включенный через диодный мост VD1 в цепь управляющего электрода симистора VS2. Как только напряжение, приложенное к эмиттерному переходу транзистора VT1, работающего в нашем случае подобно стабилитрону, превысит приблизительно 8... 10 В, произойдет обратимый лавинный пробой этого участка и тринистор VS1 будет открыт. Импульс тока разрядки конденсатора 1 откроет симистор VS2. Подаваемую в нагрузку мощность регулируют, изменяя переменным резистором R4 постоянную времени зарядки конденсатора С .

Детали регулятора могут быть смонтированы на печатной плате, показанной на рис. 4. Переменный резистор R4 — СП-1, СПЗ-ЗОа, СПЗ-35 или СПЗ-33. На его ось обязательно надевают ручку из изоляционного материала. Постоянные резисторы — МЛТ, С2-23, С2-ЗЗН, С1-4. Конденсатор С1 — К73-50, К73-24В, К73-17. К73-16; С2 — К10-17, КМ-6. Диодный мост — любой из серий DB101—DB107 [4], КЦ422, КЦ407. Можно составить мост и из четырех дискретных диодов серий КД105, КД209, КД221, КД243, 1 N4001 — 1 N4007. Симистор КУ208Г можно заменить другим средней мощности, например, ТС106-10, ТС112-16, ТС112-10, ТС122-25. Предпочтительнее четвертой и более высоких групп по напряжению.

Практика показала, что сколь бы слаботочной ни была нагрузка, симистору VS2 необходим теплоотвод. Объясняется это большим неуправляемым обратным током симистора, которого хватает для его саморазогрева и последующего произвольного открывания. При выборе размеров и формы теплоотвода следует стремиться к тому, чтобы его температура при длительной работе на максимальной мощности не превышала 60 °С. Место для теплоотвода симистоpa VS2 на плате предусмотрено.

Налаживание регулятора сводится к подборке конденсатора С1 такой емкости, чтобы при перемещении движка резистора R4 от одного крайнего положения в другое был перекрыт весь необходимый интервал подаваемой в нагрузку мощности.

ЛИТЕРАТУРА

  1. Бирюков С. Симисторные регуляторы мощности. — Радио, 1996, ╧ 1, с. 44—46.
  2. Бутов А. Сенсорный регулятор мощности. — Радио, 2002, ╧ 1, с. 32.
  3. Нефедов А. Интегральные микросхемы и их зарубежные аналоги. Справочник. — М.: "Радиософт", 1999, с. 82. 83.
  4. Зарубежные выпрямительные диоды и мосты. — Радио, 1998, ╧ 10, с 82—94.

Примечание редакции. Любой симисторный регулятор создает радиопомехи, поэтому его следует хорошо экранировать и подключать к сети и нагрузке через фильтр. Такой, например, как на рис. 3 а статье С. Сорокоумова "Симисторный регулятор повышенной мощности" ("Радио". 2000,╧ 7,0.41).

Редактор — А. Долгий,
графика — А. Долгий 

Вернуться к содержанию журнала "Радио" 4 номер 2004 год







Ваш комментарий к статье
Журнал Радио 4 номер 2004 год. :
Ваше имя:
Отзыв: Разрешено использование тэгов:
<b>жирный текст</b>
<i>курсив</i>
<a href="http://site.ru"> ссылка</a>