Распродажа

Электронные компоненты со склада по низким ценам, подробнее >>>

Журнал Компел

2010: 
1, 2, 3, 4, 5, 6, 7, 8, 9
2009: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
13, 14, 15, 16
2008: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
13, 14, 15, 16
2007: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
13, 14, 15, 16, 17, 18, 19, 20
2005: 
1, 2, 3

Новости электроники

В 14 раз выросло количество россиян на MediaTek Labs ? проекте по созданию устройств "интернета вещей" и "носимых гаджетов"

Сравнив статистику посещения сайта за два месяца (ноябрь и декабрь 2014 года), в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины ? в 12. Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs.mediatek.com превысила одну десятую от общего количества зарегистрированных на MediaTek Labs пользователей.

Новое поколение Джобсов или как MediaTek создал свой маленький "Кикстартер"

Амбициозная цель компании MediaTek - сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик - порог входа очень низкий.

Семинар и тренинг "ФеST-TIваль инноваций: MAXIMум решений!" (14-15.10.2013, Новосибирск)

Компания Компэл, приглашает вас принять участие в семинаре и тренинге ?ФеST-TIваль инноваций: MAXIMум решений!?, который пройдет 14 и 15 октября в Новосибирске.

Мне нравится

Комментарии

дима пишет в теме Параметры биполярных транзисторов серии КТ827:

люди куплю транзистар кт 827А 0688759652

тамара плохова пишет в теме Журнал Радио 9 номер 1971 год. :

как молоды мы были и как быстро пробежали годы кулотино самое счастливое мое время

Ивашка пишет в теме Параметры отечественных излучающих диодов ИК диапазона:

Светодиод - это диод который излучает свет. А если диод имеет ИК излучение, то это ИК диод, а не "ИК светодиод" и "Светодиод инфракрасный", как указано на сайте.

Владимир пишет в теме 2Т963А-2 (RUS) со склада в Москве. Транзистор биполярный отечественный:

Подскажите 2т963а-2 гарантийный срок

Владимир II пишет... пишет в теме Параметры биполярных транзисторов серии КТ372:

Спасибо!

Журнал "Новости Электроники", номер 6, 2010 год.

Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов

Андрей Никитин (г. Минск)
В линейке аналоговых и смешанных интегральных схем, выпускаемых компанией STMicroelectronics, важное место занимают драйверы MOSFET- и IGBT-транзисторов. В статье рассматриваются высоковольтные драйверы компании STM. Основное внимание уделяется современным сериям высо-ковольтных драйверов L638x и L639x.

Мощные полевые MOSFET-транзисторы и биполярные транзисторы с изолированным затвором (IGBT-транзисторы) являются базовыми элементами современной силовой электроники и используются в качестве элементов коммутации больших токов и напряжений. Однако для согласования низковольтных логических управляющих сигналов с уровнями управления затвора MOSFET- и IGBT-транзисторов требуются промежуточные устройства согласования - высоковольтные драйверы (в дальнейшем, для краткости, под «высоковольтными драйверами» будем понимать «высоковольтные драйверы MOSFET- и IGBT-транзисторов»).

В большинстве случаев используется следующая классификация высоковольтных драйверов:

На рис. 1 показаны соответствующие этим типам драйверов схемы управления.

 

Упрощенные схемы управления MOSFET- и IGBT-транзисторами

 

Рис. 1. Упрощенные схемы управления MOSFET- и IGBT-транзисторами

В первом случае (рис. 1а) управление двумя независимыми нагрузками осуществляется от единых управляющих сигналов. Нагрузки, соответственно, включаются между истоком нижнего транзистора и шиной высоковольтного питания (драйвер нижнего плеча), а также между стоком верхнего транзистора и землей (драйвер верхнего плеча). Так называемые средние точки (сток верхнего транзистора и исток нижнего транзистора) не соединены между собой.

Во втором случае (рис. 1б) средние точки соединены. Причем нагрузка может быть включена как на верхнее, так и на нижнее плечо, но подключена к средней точке аналогично полумостовой схеме (т.н. полная мостовая схема). Строго говоря, в схеме 1а ничто не мешает соединить средние точки. Но в этом случае при определенной комбинации входных сигналов возможно одновременное открытие сразу двух транзисторов и, соответственно, протекание чрезмерно большого тока от высоковольтной шины на землю, что приведет к выходу из строя одного или сразу обоих транзисторов. Исключение подобной ситуации в данной схеме является заботой разработчика. В полумостовых драйверах (схема 1б) подобная ситуация исключается на уровне внутренней логики управления микросхемы.

В третьем случае (1в) нагрузка включается между стоком верхнего транзистора и землей, а в четвертом (1г) - между истоком нижнего транзистора и шиной высоковольтного питания, т.е. отдельно реализованы две «половинки» схемы 1а.

Компания STMicroelectronics в последние годы ориентируется (в нише высоковольтных драйверов) только на драйверы первых двух типов (семейства L638x и L639x, которые будут рассмотрены ниже). Однако более ранние разработки содержат микросхемы драйверов, управляющих включением или выключением одиночного MOSFET- или IGBT-транзистора (категория «Single» в терминах компании STMicroelectronics). При определенной схеме включения данные драйверы могут управлять нагрузкой как верхнего, так и нижнего плеча. Отметим также микросхему TD310 - три независимых одиночных драйвера в одном корпусе. Такое решение будет эффективным при управлении трехфазной нагрузкой. Данную микросхему компания STMicroelectronics относит к драйверам категории «Multiple».

 

Семейство высоковольтных драйверов
L368x

В таблице 1 приводятся состав и параметры микросхем семейства L368x. Микросхемы данного семейства включают в себя как независимые драйверы верхнего и нижнего плеча (H&L), так и драйверы полумостовой схемы (HB).

Таблица 1. Параметры драйверов семейства L638x  
Наименование Voffcet, В Io+, мА Io-, мА Ton, нс Toff, нс Tdt, нс Тип Управление
L6384E 600 400 650 200 250 Prog. HB IN/-SD
L6385E 600 400 650 110 105   H&L HIN/LIN
L6386E 600 400 650 110 150   H&L HIN/LIN/-SD
L6387E 600 400 650 110 105   H&L HIN/LIN
L6388E 600 200 350 750 250 320 HB HIN/LIN

Поясним некоторые параметры:

VOFFSET - максимально возможное напряжение между истоком верхнего транзистора и землей;

IO+ (IO-) - максимальный выходной ток при открытом верхнем (нижнем) транзисторе выходного каскада микросхемы;

TON (TOFF) - задержка распространения сигнала от входов HIN и LIN до выходов HO и LO при включении (выключении);

TDT - время паузы - параметр, имеющий отношение к драйверам полумостовой схемы. При смене активных состояний логическая схема принудительно вводит паузы, позволяющие избегать включения верхнего и нижнего плеча одновременно. Например, если выключается нижнее плечо, то какое-то время оба плеча выключены и только потом включается верхнее. И, наоборот, если выключается верхнее плечо, то какое-то время оба плеча выключены и затем включается нижнее. Это время может быть либо фиксированным (как в L6388E), либо задаваться путем выбора номинала соответствующего внешнего резистора (как в L6384E).

Управление. Микросхемы независимых драйверов верхнего и нижнего плеча управляются по входам HIN и LIN. Причем высокий уровень логического сигнала включает, соответственно, верхнее или нижнее плечо драйвера. В микросхеме L6386E помимо этого используется дополнительный вход SD, отключающий оба плеча независимо от состояния на входах HIN и LIN.

В микросхеме L6384E применяются сигналы SD и IN. Сигнал SD отключает оба плеча независимо от состояния на входе IN. Сигнал IN = 1 эквивалентен комбинации сигналов {HIN = 1, LIN = 0} и, наоборот, IN = 0 эквивалентен комбинации сигналов {HIN = 0, LIN = 1}. Таким образом, одновременное включение транзисторов верхнего и нижнего плеча невозможно в принципе.

В микросхеме L6388E управление осуществляется по входам HIN и LIN, поэтому принципиально возможно подать на входы комбинацию {HIN = 1, LIN = 1}, однако внутренняя логическая схема преобразует ее в комбинацию {HIN = 0, LIN = 0}, исключив, таким образом, одновременное включение обоих транзисторов.

Что касается параметров, начнем с микросхем типа H&L.

Значение VOFFSET, равное 600 Вольт, является в каком-то смысле стандартом для микросхем данного класса.

Значение выходного тока IO+ (IO-), равное 400/650 мА, является показателем средним, ориентированным на типовые транзисторы общего назначения. Если сравнивать с микросхемами семейства IRS (поколение G5 HVIC), то компания International Rectifier предлагает, главным образом, микросхемы с параметром 290/600 мА. Однако в линейке International Rectifier есть также модели с параметрами 2500/2500 мА (IRS2113) и несколько меньшим быстродействием или микросхемы с выходными токами до 4000/4000 мА (IRS2186). Правда, в этом случае время переключения по сравнению с L6385E увеличивается до значения 170/170 нс.

Время переключения. Значения TON (TOFF), равные 110/105 нс (для L6385E), превышают аналогичные значения микросхем семейства IRS (пусть и не очень значительно). Лучших показателей (60/60 нс) компания International Rectifier добилась в модели IRS2011, но за счет снижения напряжения VOFFSET до 200 В.

Однако отметим, что компания STMicroelectronics предлагает драйверы, в которых общий провод входного (низковольтного) и выходного (высоковольтного) каскадов - единый. Компания International Rectifier, помимо микросхем с аналогичной архитектурой, предлагает драйверы с раздельными общими шинами для входного и выходного каскадов.

Сравнивая параметры драйвера полумостовой схемы L6384E с изделиями International Rectifier, можно сделать вывод, что он уступает (и по выходным токам, и по быстродействию) только модели IRS21834, в которой реализована входная логика HIN/-LIN. Если критичной является входная логика IN/-SD, то драйвер L6384E превосходит по своим параметрам изделия International Rectifier.

Более подробно рассмотрим микросхему драйвера L6385E, структура и схема включения которой приведена на рис. 2.

 

Структура и схема включения L6385E

 

Рис. 2. Структура и схема включения L6385E

Микросхема содержит два независимых драйвера верхнего (выход HVG) и нижнего плеча (выход LVG). Реализация драйвера нижнего плеча достаточно тривиальна, поскольку потенциал на выводе GND постоянен и, следовательно, задача состоит в преобразовании входного низковольтного логического сигнала LIN до уровня напряжения на выходе LVG, необходимого для открытия транзистора нижнего плеча. В верхнем плече потенциал на выводе OUT изменяется в зависимости от состояния нижнего транзистора. Существуют различные схемотехнические решения, применяемые для построения каскада верхнего плеча. В данном случае применяется относительно простая и недорогая бутстрепная схема управления (схема с «плавающим» источником питания). В такой схеме длительность управляющего импульса ограничена величиной бутстрепной емкости. Кроме того, необходимо обеспечить условия для ее постоянного заряда с помощью высоковольтного быстродействующего каскада сдвига уровня. Этот каскад обеспечивает преобразование логических сигналов до уровней, необходимых для устойчивой работы схемы управления транзистора верхнего плеча.

При падении напряжения управления ниже определенного предела выходные транзисторы могут перейти в линейный режим работы, что, в свою очередь, приведет к перегреву кристалла. Для предотвращения этого должны использоваться схемы контроля напряжения (UVLO - Under Voltage LockOut) и для верхнего (контроль потенциала VBOOT), и для нижнего (контроль VCC) плеча.

Для современных высоковольтных драйверов характерна тенденция интегрировать бутстрепный диод в корпус интегральной схемы. Благодаря этому отпадает необходимость в применении внешнего диода, который является достаточно громоздким по сравнению с самой микросхемой драйвера. Встроенный бутстрепный диод (точнее, бутстрепная схема) применен не только в драйвере L6385E, но и во всех остальных микросхемах этого семейства.

Микросхема L6386E является вариантом L6385E с дополнительными функциями. Ее структура и схема включения приведены на рис. 3.

 

Структура и схема включения L6386E

 

Рис. 3. Структура и схема включения L6386E

Основные отличия L6386E от L6385E. Во-первых, добавлен дополнительный вход SD, низкий уровень сигнала на котором выключает оба транзистора независимо от состояния входов HIN и LIN. Часто используется как сигнал аварийного отключения, не связанный со схемой формирования входных управляющих сигналов. Во-вторых, добавлен каскад контроля тока, протекающего через транзистор нижнего каскада. Сравнивая с предыдущей схемой, видим, что сток транзистора нижнего плеча подключен к земле не непосредственно, а через токовый резистор (токовый датчик). Если падение напряжения на нем превышает пороговое значение VREF, то на выходе DIAG формируется низкий уровень. Отметим, что данное состояние не влияет на работу схемы, а является только индикатором.

Несколько слов о применении микросхем семейства L638x. Ограниченный объем статьи не позволяет рассмотреть примеры применения, однако в документе «L638xE Application Guide» компании STMicroelectronics [1] приведены примеры схемы управления трехфазным двигателем, схемы балласта люминесцентной лампы с диммированием, DC/DC-преобразователей с различной архитектурой и ряд других. Также приведены схемы демонстрационных плат для всех микросхем данного семейства (в том числе и топология печатных плат).

Подводя итог анализа семейства L638x, отметим: не обладая уникальными характеристиками по каким-то отдельным параметрам, драйверы данного семейства относятся к одним из лучших в отрасли как по совокупности параметров, так и по примененным техническим решениям.

 

Семейство высоковольтных драйверов
полумостовой схемы L639x

На первый взгляд, микросхемы этого семейства можно считать развитием микросхемы L6384E. Однако анализируя функциональные возможности драйверов семейства L639x, признать L6384E в качестве прототипа весьма сложно (разве что за отсутствием других драйверов полумоста в линейке STMicroelectronics). В таблице 2 приводятся состав и параметры микросхем семейства L639x.

Таблица 2. Параметры драйверов семейства L639x  
Наименование Voffcet, В Io+, мА Io-, мА Ton, нс Toff, нс Tdt, мкс Тип Smart SD ОУ Комп. Управление
L6390 600 270 430 125 125 0,15...2,7 HB есть есть есть HIN/-LIN/-SD
L6392 600 270 430 125 125 0,15...2,7 HB   есть   HIN/-LIN/-SD
L3693 600 270 430 125 125 0,15...2,7 HB     есть PH/-BR/-SD

Основная особенность микросхем данного семейства - наличие дополнительных встроенных элементов: операционного усилителя или компаратора (для L6390 - и того, и другого). На рис. 4 показана структура и схема включения микросхемы L6390.

 

Структура и схема включения L6390

 

Рис. 4. Структура и схема включения L6390

Какие преимущества дают дополнительные элементы в практических приложениях? Операционные усилители (в L6390 и L6392) предназначены для измерения тока, протекающего через нагрузку. Причем, поскольку доступны оба вывода (OP+ и OP-), возникает возможность формировать на соответствующем выходе микросхемы и абсолютное значение, и отклонение от некоторого опорного напряжения (соответствующего, например, максимально допустимому значению). В драйвере L6390 компаратор выполняет вполне конкретную функцию «интеллектуального отключения» (Smart Shutdown) - т.е. при превышении максимально допустимого тока в нагрузке компаратор начинает влиять на логику работы драйвера и обеспечивает плавное отключение нагрузки. Скорость отключения задается RC-цепью, подключенной к выводу SD/OD. Причем, поскольку данный вывод является двунаправленным, то он может являться как выходом индикации ошибки для управляющего микроконтроллера, так и входом для принудительного отключения.

Все микросхемы содержат логику защиты от одновременного открытия транзисторов верхнего и нижнего плеча и, соответственно, формирования паузы при изменении состояния выхода. Время паузы TDT для всех микросхем семейства программируемое и определяется номиналом резистора, подключенного к выводу DT.

Логика управления в микросхемах L6390 и L6392 однотипная - сигналы HIN, LIN и SD.

Отличие микросхемы L6393 от L6390 и L6392 заключается не только в отсутствии операционного усилителя. Компаратор в L6393 независим от остальных элементов схемы и, в принципе, может быть использован в произвольных целях. Однако наиболее разумное применение - контроль тока и формирование признака превышения (по аналогии с выводом DIAG в микросхеме L6386E, рассмотренной выше). Основное отличие заключается в логике управления - комбинация управляющих сигналов PHASE, BRAKE и SD является достаточно редкой (если не уникальной) для микросхем данного класса. Циклограмма управления представлена на рис. 5.

 

Циклограмма управления логики PHASE/BRAKE/SD

 

Рис. 5. Циклограмма управления логики PHASE/BRAKE/SD

Циклограмма ориентирована на управление непосредственно от сигналов двигателя, например, постоянного тока и реализует т.н. механизм отложенного останова. Предположим, что BRAKE - это сигнал на исполнительный механизм, т.е. его низкий уровень включает двигатель независимо от состояния сигнала PHASE. Опять же предположим, что PHASE - это сигнал с датчика обратной связи, например, с частотного датчика, установленного на валу двигателя, или концевого датчика, обозначающего точку останова. Тогда высокий уровень сигнала BRAKE остановит двигатель не немедленно, а только по положительному перепаду сигнала PHASE. Скажем, если речь идет о приводе каретки, то сигнал останова (высокий уровень BRAKE) может быть подан заблаговременно, но останов произойдет только в конкретной точке (при срабатывании датчика PHASE).

На рис. 6 показана структура и схема включения микросхемы L6393.

 

Структура и схема включения L6393

 

Рис. 6. Структура и схема включения L6393

О параметрах. Значения выходных токов IO+ (IO-), равные 270/430 мА, уступают микросхемам компании International Rectifier (у которых, как отмечалось выше, типичными являются 290/600 мА). Тем не менее, динамические параметры TON/TOFF (125/125 нс) превосходят (и часто существенно) все микросхемы семейства IRS.

Выводы по семейству L639x. При достаточно высоких количественных характеристиках, что само по себе позволяет отнести семейство L639x к группе лидеров отрасли, дополнительные функции придают качественный скачок, поскольку позволяют реализовать в одной микросхеме те функции, которые ранее реализовывались с использованием ряда дополнительных компонентов.

 

Заключение

Безусловно, номенклатуру высоковольтных драйверов компании STMicroelectronics нельзя признать очень широкой (хотя бы в сравнении с аналогичными изделиями компании International Rectifier). Тем не менее, количественные и качественные характеристики рассмотренных семейств не уступают лучшим изделиям IR.

Говоря о драйверах MOSFET- и IGBT-транзисторов, нельзя не упомянуть и сами транзисторы; компания STMicroelectronics выпускает достаточно широкую линейку полевых (например MDMESH V и SuperMesh3) и биполярных транзисторов с изолированным затвором. Поскольку эти электронные компоненты совсем недавно освещались в данном журнале [2, 3, 4], то они оставлены за рамками данной статьи.

И наконец, как упоминалось выше, линейка драйверов MOSFET- и IGBT-транзисторов компании STMicroelectronics не исчерпывается драйверами полумостовой схемы. С номенклатурой драйверов категорий «Single» и «Multiple» и их параметрами можно ознакомиться на официальном сайте компании STMicroelectronics - http://www.st.com/.

 

Литература

1. L638xE Application Guide// документ компании ST Microelectronics an5641.pdf.

2. Ячменников В. Повышаем эффективность с транзисторами MDmesh V// Новости электроники, ╧14, 2009.

3. Ильин П., Алимов Н. Обзор MOSFET и IGBT компании STMicroelectronics// Новости электроники, ╧2, 2009.

4. Меджахед Д. Высокоэффективные решения на базе транзисторов SuperMESH3 // Новости электроники, ╧16, 2009.

Вернуться к содержанию номера







Ваш комментарий к статье
Журнал "Новости Электроники", номер 6, 2010 год. :
Ваше имя:
Отзыв: Разрешено использование тэгов:
<b>жирный текст</b>
<i>курсив</i>
<a href="http://site.ru"> ссылка</a>